A Martingale Representation for the Maximum of a Lévy Process
نویسنده
چکیده
By using Malliavin calculus for Lévy processes, we compute an explicit martingale representation for the maximum of a square-integrable Lévy process.
منابع مشابه
A Note on Esscher Transformed Martingale Measures for Geometric Lévy Processes
The Esscher transform is one of the very useful methods to obtain the reasonable equivalent martingale measures, and it is defined with relation to the corresponding risk process. In this article we consider two kinds of risk processes (compound return process and simple return process). Then we obtain two kinds of Esscher transformed martingale measures. The first one is the one which was intr...
متن کاملRisk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process
This paper focuses on two main issues that are based on two important concepts: exponential Levy process and minimal entropy martingale measure. First, we intend to obtain risk measurement such as value-at-risk (VaR) and conditional value-at-risk (CvaR) using Monte-Carlo methodunder minimal entropy martingale measure (MEMM) for exponential Levy process. This Martingale measure is used for the...
متن کاملMartingale measures for the geometric Lévy process models
The equivalent martingale measures for the geometric Lévy processes are investigated. They are separated to two groups. One is the group of martingale measures which are obtained by Esscher transform. The other one is such group that are obtained as the minimal distance martingale measures. We try to obtain the explicit forms of the martingale measures, and we compare the properties of the mart...
متن کاملEfficient maximum likelihood estimation for Lévy-driven Ornstein-Uhlenbeck processes
We consider the problem of efficient estimation of the drift parameter of an Ornstein-Uhlenbeck type process driven by a Lévy process when high-frequency observations are given. The estimator is constructed from the time-continuous likelihood function that leads to an explicit maximum likelihood estimator and requires knowledge of the continuous martingale part. We use a thresholding technique ...
متن کاملA construction of processes with one-dimensional martingale marginals, associated with a Lévy process, via its Lévy sheet
Abstract We give some adequate extension, in the framework of a general Lévy process, of our previous construction of processes with one-dimensional martingale marginals, done originally in the set-up of Brownian motion. The Lévy process framework allows us to streamline our previous arguments, as well as to reach a larger class of such processes, even in the Brownian case. We give some illustr...
متن کامل